J4 ›› 2015, Vol. 37 ›› Issue (06): 1135-1141.
梁礼明,钟震,陈召阳
LIANG Liming,ZHONG Zhen,CHEN Zhaoyang
摘要:
支持向量机是一种基于核的学习方法,核函数选取对支持向量机性能有着重要的影响,如何有效地进行核函数选择是支持向量机研究领域的一个重要问题。目前大多数核选择方法不考虑数据的分布特征,没有充分利用隐含在数据中的先验信息。为此,引入能量熵概念,借助超球体描述和核函数蕴藏的度量特征,提出一种基于样本分布能量熵的支持向量机核函数选择方法,以提高SVM学习能力和泛化能力。数值实例仿真验证表明了该方法的可行性和有效性。