• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (12): 2345-2351.

• 论文 • 上一篇    下一篇

基于Tri-Training的事件关系分类方法研究

丁思远,洪宇,朱珊珊,姚建民,朱巧明   

  1. (苏州大学江苏省计算机信息处理重点实验室,江苏 苏州 215006)
  • 收稿日期:2015-09-01 修回日期:2015-11-03 出版日期:2015-12-25 发布日期:2015-12-25
  • 基金资助:

    国家自然科学基金资助项目(61003152,61272259,61272260)

Event relation classification based on Tri-Training 

DING Siyuan,HONG Yu,ZHU Shanshan,YAO Jianmin,ZHU Qiaoming   

  1. (Provincial Key Laboratory of Computer Information Processing Technology,Soochow University,Suzhou 215006,China)
  • Received:2015-09-01 Revised:2015-11-03 Online:2015-12-25 Published:2015-12-25

摘要:

事件关系分类是一项研究事件之间存在何种逻辑关系的自然语言处理技术。针对事件关系分类任务中训练语料不足的问题,提出了基于Tri-Training的事件关系分类方法。该方法首先根据已标注的语料训练三个不同的分类器,以多数投票的方式从未标注集中抽取置信度较高的样本对训练集进行扩充,然后利用新的训练集重新训练分类器,反复迭代,不断完善分类模型,最终达到提升事件关系分类性能的目的。实验结果表明,以F1值为评价标准,基于Tri-Training的事件关系分类方法在四大类事件关系上的分类性能为64.36%。

关键词: 事件关系, 框架语义, 半监督学习, Tri-Training

Abstract:

As one of natural language processing techniques, event relation detection aims at exploring logical relationship between pairwise events. To solve the problem of lacking enough training data in event relation detection tasks, we propose a novel approach based on Tri-Training to augment the training corpus. We firstly use labeled training data to learn three different classifiers, and then exploit majority voting method to expand training corpus with higher confidence samples, iteratively optimize the model and eventually improve the performance of event relation classification. Experimental results show that compared to other methods, the TriTraining based method achieves 64.3% F1-score over four general semantic relations.

Key words: event relation;frame;semi-supervised learning;Tri-Training