• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (03): 520-527.

• 论文 • 上一篇    下一篇

基于多尺度HOG的草图检索

李思思,陈曦,肖建   

  1. (长沙理工大学计算机与通信工程学院,湖南 长沙 410114)
  • 收稿日期:2015-05-11 修回日期:2015-07-06 出版日期:2016-03-25 发布日期:2016-03-25
  • 基金资助:

    湖南省自然科学基金(11JJ3069)

Sketch-based image retrieval based on multi-scale HOG          

LI Sisi,CHEN Xi,XIAO Jian   

  1. (School of Computer & Communication Engineering,Changsha University of Science & Technology,Changsha 410114,China)
  • Received:2015-05-11 Revised:2015-07-06 Online:2016-03-25 Published:2016-03-25

摘要:

草图检索是图像处理领域中的重要研究内容。提出了一种将高斯金字塔和局部HOG特征融合的特征提取改进方法,并将其用于草图检索。采用高斯金字塔将图像分解到多尺度空间,在所有尺度上进行兴趣点提取,获得基于兴趣点的多尺度HOG特征。利用图像的多尺度HOG特征集生成视觉词典,最终形成与视觉词典相关的特征描述向量,通过相似度匹配实现草图检索。将该算法与单一尺度下的HOG算法及其他几种算法比较,实验结果表明了其可行性和有效性。

关键词: 草图检索, 高斯金字塔, 多尺度HOG, 形状特征

Abstract:

Sketch-based image retrieval is an important research topic in the field of image processing. We present an improved feature extraction method for sketchbased image retrieval, which combines the Gaussian pyramid and local histogram of gradient (HOG) features. By using Gaussian pyramid, the image is decomposed into multiple resolution images on which the points of interest are extracted, and the points based multiscale HOG features are obtained. The visual word dictionary is generated from the multiscale HOG features, and finally feature vectors relative to visual words are formed. The images are ranked according to decreasing similarity which is calculated by the distance between the feature vectors of sketches and the images. Compared with the HOG algorithm at single scale and several other algorithms,  experimental results demonstrate the feasibility and effectiveness of the proposed method.

Key words: sketch-based image retrieval;Gaussian pyramid;multiscale HOG;shape feature