• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于聚类的多目标遗传算法在类职责分配中的应用

李雅琎1,刘伟1,2,胡志刚1   

  1. (1.中南大学软件学院,湖南 长沙 410075;2.湖南中医药大学管理与信息工程学院,湖南 长沙 410208)
  • 收稿日期:2015-07-31 修回日期:2015-09-14 出版日期:2016-07-25 发布日期:2016-07-25

Application of multiobjective genetic algorithms  based on clustering in class responsibility assignment        

LI Ya jin1,LIU Wei1,2,HU Zhi gang1   

  1. (1.School of Software,Central South University,Changsha 410075;
    2.School of Management and Information Engineering,Hunan University of Chinese Medicine,Changsha 410083,China)
  • Received:2015-07-31 Revised:2015-09-14 Online:2016-07-25 Published:2016-07-25

摘要:

在面向对象软件设计与实现过程中,类职责分配是其中最重要且复杂的步骤之一,它在很大程度上影响软件质量。为了实现类职责自动分配的目标,从软件内聚与耦合度量的角度出发,建立了类职责分配问题多目标优化模型。在基于快速非支配排序多目标遗传算法基础上,引入凝聚的层次聚类技术,保证群体多样性,避免陷入未成熟收敛。在实验中,通过对类职责自动分配并与一个已有的设计优良的软件系统进行对比,验证了此算法的正确性。另外,通过与单目标遗传算法、SPEA2算法对比表明,本算法在解决类职责分配问题上运行效果最好。

关键词: 类职责分配, 多目标遗传算法, 快速非支配排序, 凝聚层次聚类

Abstract:

In the process of objectoriented software design and implementation, responsibility assignment problem (CRA) is one of the most important and complicated procedures, which affects the quality of software to a large extent. In order to achieve the goal of CRA automatically, we propose a CRA multiobjective optimization model which is built from the perspective of cohesion and coupling metrics. On the basis of fast nondominated sorting genetic algorithm, we introduce the agglomerate hierarchical clustering technology to ensure population diversity and to avoid premature convergence. Experiments on automatical class responsibility assignment verify the correctness of the algorithm, whose results are also compared with an existing welldesigned software system. In addition, compared with the single objective genetic algorithm and the SPEA2 algorithm, the proposed algorithm has the best CRA operation effect.

Key words: class responsibility assignment, multi-objective genetic algorithms, fast non-dominated sorting, hierarchical agglomerative clustering