摘要:
疲劳驾驶研究中,面部关键特征精确定位与跟踪是个难点。提出了一种基于主动形状模型ASM和肤色模型的疲劳驾驶检测方法。首先,利用肤色模型检测到人脸区域为ASM提供初始定位;然后基于ASM进行人眼和嘴巴跟踪获得眼睛与嘴巴区域;再利用Canny算子对两个区域精确定位,获得疲劳检测参数;最后根据PERCLOS方法实现疲劳检测。考虑到基于HSV颜色模型的人脸检测不受姿势和角度的影响,但容易受到背景干扰,而ASM的优点是人脸关键点跟踪效果好,但初始定位困难,将二者结合实现了眼睛与嘴巴精确定位与跟踪。实验表明,眼睛检测准确率可以达到90.7%,哈欠检测准确率可以达到83.3%,疲劳检测准确率达到91.4%。