• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种高精度高光谱图像分类方案设计

魏利峰1,2,纪建伟1   

  1. (1.沈阳农业大学信息与电气工程学院,辽宁 沈阳 110866;2.沈阳航空航天大学经济与管理学院,辽宁 沈阳 110136)
  • 收稿日期:2015-05-14 修回日期:2015-09-11 出版日期:2016-07-25 发布日期:2016-07-25
  • 基金资助:

    国家自然科学基金青年项目(71301108);辽宁省科学十二五规划课题(JG13DB093)

A high precision hyperspectral image classification scheme        

WEI Li-feng1,2,JI Jian-wei1   

  1. (1.Collage of Information and Electrical Engineering,Shenyang Agricultural University,Shenyang,110866;
    2.Collage of Econmics and Management,Shenyang Aerospace University,Shenyang 110136,China)
  • Received:2015-05-14 Revised:2015-09-11 Online:2016-07-25 Published:2016-07-25

摘要:

为了有效改善高光谱图像数据分类的精确度,减少对大数目数据集的依赖,在原型空间特征提取方法的基础上,提出一种基于加权模糊C均值算法改进型原型空间特征提取方案。该方案通过加权模糊C均值算法对每个特征施加不同的权重,从而保证提取后的特征含有较高的有效信息量,从而达到减少训练数据集而不降低分类所需信息量的效果。实验结果表明,与业内公认的原型空间提取算法相比,该方案在相对较小的数据集下,其性能仍具有较为理想的稳定性,且具有相对较高的分类精度。

Abstract:

In order to improve the classification accuracy of hyperspectral image data and reduce its dependence on a large number of data sets, we propose an improved feature extraction scheme based on weighted fuzzy C-means algorithm. The weighted fuzzy C-means algorithm is applied to assign different weights to each feature, thus ensuring the extracted features contain more effective information so as to reduce the number of training data sets without reducing the amount of information needed for classification. Experimental results show that compared with the prototype spatial feature extraction method, the proposed method is stable and has a higher classification accuracy under small data sets.