• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种改进的基于QPSO的VIBE算法

汪济洲1,2,鲁昌华1,蒋薇薇1   

  1. (1.合肥工业大学计算机与信息学院,安徽 合肥 230031; 2.合肥学院电子信息与电气工程系,安徽 合肥 230601)
  • 收稿日期:2015-04-27 修回日期:2015-08-19 出版日期:2016-09-25 发布日期:2016-09-25

An improved VIBE algorithm based on QPSO  

WANG Ji-zhou1,2,LU Chang-hua1,JIANG Wei-wei1   

  1. (1.School of Computer and Information,Hefei University of Technology,Hefei 230031;
    2.Department of Electronic Information and Electrical Engineering,
    Hefei University,Hefei 230601,China)
  • Received:2015-04-27 Revised:2015-08-19 Online:2016-09-25 Published:2016-09-25

摘要:

与传统背景减除建模算法相比,视频背景提取算子(VIBE)算法无需估计背景数据的概率分布。所以,不像传统背景减除算法需要一定数量的训练视频帧,具有较小的运算复杂度与较好的精度,适用于嵌入式实时视频监测。某些场合下,视频流需要适时改变分辨率。然而,传统VIBE算法通常采用固定参数,不同分辨率的视频流,会导致固定参数的VIBE算法的检测精度下降。为此提出一种基于量子蚁群最优(QPSO)参数寻优算法,在初始状态对于视频流进行参数寻优计算,获取相应的最优参数,从而提高VIBE算法的学习能力。实验从定量和定性两个角度验证了本文改进的VIBE算法大幅度提升了针对不同分辨率的视频流分析能力。

关键词: 视频背景提取算子, 背景减除法, 量子蚁群最优

Abstract:

Compared with the traditional background subtraction model, the VIBE algorithm does not require an estimation of a probability function for background pixels or a sequence of training samples. So there is a good balance between computation complexity and accuracy performance for the algorithm. It can be usually used in real time video embedded sequence surveillance systems. The resolutions of a video sequence can be changed under some circumstances. However, the fixed parameters method adopted in the traditional VIBE leads to degraded detection accuracy. We present an improved VIBE algorithm which obtains optimal parameters using the QPOS algorithm during initialization in order to improve the generalization ability of the VIBE. Experimental results verify the proposed algorithm quantitatively and qualitatively, which can greatly improve the accuracy performance.

Key words: visual background extractor, background subtraction, quantum-behavior particle swarm optimalization