• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于时空图的交通流量统计和交通状态检测

吴志芳1,刘昕2   

  1. (1.武汉科技大学计算机科学与技术学院,湖北 武汉 430065;
    2.湖北华中电力科技开发有限责任公司,湖北 武汉 430077)
  • 收稿日期:2015-01-23 修回日期:2015-09-22 出版日期:2016-09-25 发布日期:2016-09-25

Traffic flow estimation and traffic state  detection based on the space-time map  

WU Zhi-fang1,LIU Xin2   

  1. (1.College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065;
    2.Huibei Central China Technology Development of Electric Power CO.,Ltd.,Wuhan 430077,China)
  • Received:2015-01-23 Revised:2015-09-22 Online:2016-09-25 Published:2016-09-25

摘要:

提出了一种新的基于时空图的交通流量统计和交通状态检测方法。首先,通过人机交互的方法设定检测线,并利用检测线计算时空图;然后,对时空图进行边缘提取、图像分割等处理,利用时空图上车辆的边缘、形状和占道率等信息,计算出一段时间内的交通流量。此外,还通过时空图的边缘信息的差异,将当前时间段的交通状态分为通畅、拥挤和堵塞三种不同的情况。实验结果表明,在摄像机安装位置合适的情况下,该方法统计交通流量的误差低于8%,判断交通状态的误差为0,具有很好的商业实用性。

关键词: 智能交通, 时空图, 检测线, 交通流量统计, 交通状态检测

Abstract:

We propose a novel traffic flow estimation and traffic state detection approach. Firstly, the detection line used to compute the space-time map is set via man-machine interaction, and the processes such as edge detection, image segmentation and so on are then performed in the space-time map. The traffic flow for a period of time is estimated by using the information of edge, shape and the rate of road occupation. In addition, the current traffic state is divided into three levels: clear, crowd and jam by using the difference between edge information in the space-time map. Experimental results show that the proposed approach can effectively compute the traffic flow and detect the traffic state, and it is practical for commerce.

Key words: intelligent traffic, space-temporal map, detection line, traffic flow counting, traffic state detection