马慧1,赵捧未1,王婷婷2
MA Hui1,ZHAO Peng-wei1,WANG Ting-ting2
摘要:
针对传统减法聚类算法需要人工输入参数τ1和τ2的不足,对算法进行改进。引入AFS理论,通过隶属度矩阵自动确定密度半径τ1、半自动确定权重参数τ2,提出了改进的语义减法聚类算法SDSCM,并在Iris和Wine数据集上将其与FCM、KMEANS算法进行比较实验。实验结果表明,SDSCM在评价指标语义强度期望上高于FCM、KMEANS 1%~5%。SDSCM的SPT指标低于FCM、KMEANS,算法的类间分离度有待提高。SDSCM较好地解决了传统减法聚类人工输入参数τ1和τ2带来的弊端,并给出了更贴近用户给定语义的聚类。