• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种基于自适应混合模型的背景减除法

李伟生,李辉飞   

  1. (重庆邮电大学计算智能重庆市重点实验室,重庆 400065)
  • 收稿日期:2015-09-06 修回日期:2015-11-05 出版日期:2016-10-25 发布日期:2016-10-25
  • 基金资助:

    国家自然科学基金(61272195,61472055);重庆市基础与前沿研究(cstc2014jcyjjq40001)

A background subtraction method based
on adaptive hybrid model

LI Wei-sheng,LI Hui-fei   

  1. (Chongqing Key Laboratory of Computational Intelligence,
    Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
  • Received:2015-09-06 Revised:2015-11-05 Online:2016-10-25 Published:2016-10-25

摘要:

针对局部二进制相似度(LBSP)背景建模方法易受外界环境变化如动态背景、光照改变、相机抖动等干扰的问题,在融合像素纹理与亮度信息的基础上,建立一种自适应混合背景模型进行运动目标检测。首先,利用每个像素的多通道自适应局部二进制相似度(LBSP)信息和亮度信息建立混合背景模型。然后,根据当前像素与混合背景模型的比较结果对其进行分类,并采用随机更新机制更新背景模型。实验结果表明,本方法不仅在正常外界环境下取得了较好的检测结果,而且还可以有效地减少动态背景、光照变化等复杂外界环境条件造成的干扰,提高检测结果的准确性。

关键词: 运动目标检测, 纹理背景模型, 自适应LBSP, 时间背景模型, 随机更新机制

Abstract:

In view that the existing background modeling method based on local binary similarity pattern (LBSP) is very vulnerable to external environment changes,such as dynamic background,illumination changes,camera shaking and so on,based on fusing pixel texture information with intensity information,we propose an adaptive hybrid model for moving object detecting.First,we use the texture descriptor of each pixel, named multi-channel adaptive local binary similarity pattern (LBSP) information,combined with intensity information,to build a hybrid background model.We then classify the current pixels according to the comparison results between the current pixel and the corresponding hybrid background model,and update the background model with the random updating mechanism.Experimental results show that the proposed method cannot only achieve good results in an ideal outside environment,but also effectively reduce the interference caused by complicated external environment conditions such as dynamic background,illumination changing and camera shaking,thus achieving  better detection results.

Key words: moving object detection, texture background model, adaptive LBSP, temporal background model, random update mechanism