• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于LDA的表面肌电信号分类研究

马正华,乔玉涛,李雷,戎海龙   

  1. (常州大学信息科学与工程学院、数理学院,江苏 常州 213164)
  • 收稿日期:2015-09-08 修回日期:2015-11-04 出版日期:2016-11-25 发布日期:2016-11-25
  • 基金资助:

    江苏省自然科学基金(BK20140265);江苏省普通高校研究生科研创新计划(KYLX_1105)

Classification of surface EMG signals based on LDA
 

MA Zhenghua,QIAO Yutao,LI Lei,RONG Hailong   

  1. (School of Information Science & Engineering,School of Mathematics & Physics,
    Changzhou University,Changzhou 213164,China)
     
  • Received:2015-09-08 Revised:2015-11-04 Online:2016-11-25 Published:2016-11-25

摘要:

研究了一种基于LDA分类器的模式识别方法,比较了五种特征参数组合方式,分析了无关联线性判别分析
ULDA和PCA两种降维方法,通道数量和窗口长度对肌电信号分类的影响,最后应用LDA分类器对降维后的
数据进行分类。实验结果表明:均方根和四阶AR系数两种特征组合在4通道和8通道下的准确率分别可以
达到90%和96%,增加通道数量或特征数量可以进一步提高准确率;通过ULDA将特征矢量的维数降低到6维
时,仍可以保证较高的准确率;6种手势的识别率超过了94%,其中4种手超过了97%,分类出错的窗口主
要集中在过渡阶段。
 

关键词: 表面肌电, 无关联线性判别分析, 线性判别式分析

Abstract:

We describe a pattern recognition method which is based on a linear discriminant
classifier.We also make a comparison among the combination types of the five feature
parameters,and analyze the two dimension reduction methods of uncorrelated linear
discriminant analysis (ULDA) and principal component analysis (PCA),as well as the impact
of channel number and window length on the classification of EMG signals.Then the LDA
classifier is used to classify the reduced dimension data.Experimental results are as
follows: 1) the accuracy of the combination of the mean square root and the four order AR
coefficients under  four channels and eight channels can reach 90% and 96% respectively;2)
increasing the number of channels or features can further improve the accuracy rate;3) when
reducing the dimension of feature vectors to six dimensions by using the ULDA,a high
accuracy rate can still be ensured;4) the recognition accuracy of six hand gestures are
more than 94%,among which the recognition accuracy of four hand gestures can reach more
than 97%.Classification errors mainly occur in the transition phase.

Key words: