• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于空间结构的图像特征匹配算法

周莉莉1,姜枫2   

  1. (1.南京理工大学泰州科技学院电子电气工程学院,江苏 泰州 225300;
    2.南京理工大学泰州科技学院计算机科学与技术系,江苏 泰州 225300)

     
  • 收稿日期:2015-05-20 修回日期:2015-12-07 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    泰州市科技支撑计划项目(TSD201515)

An image feature matching
algorithm based on spatial structure

ZHOU Lili1,JIANG Feng2   

  1. (1.School of Electronic and Electrical Engineering,Taizhou Institute of Science & Technology,NUST,Taizhou 225300;
    2.Department of Computer Science & Technology,Taizhou Institute of Science & Technology,NUST,Taizhou 225300,China)
  • Received:2015-05-20 Revised:2015-12-07 Online:2017-01-25 Published:2017-01-25

摘要:

图像二进制特征描述器比浮点数特征描述器存储容量小、计算速度更快。在对常用二进制特征描述器进行分析的基础上,利用图像特征点之间的空间结构信息改进FREAK描述器的采样模式,提出MPFREAK描述器,提高特征描述能力;针对特征匹配时最近邻算法运行较慢的缺点,改进LSH算法,减少候选集列表空间,提出了海明空间的二进制特征快速匹配算法MLSH。实验表明,MPFREAK描述器描述能力优于其他算法,特征匹配算法效果明显、速度更快。
 

关键词: 二进制特征描述器, FREAK, LSH, 空间结构, 海明空间

Abstract:

Image binary keypoint descriptors provide an efficient alternative for floatingpoint competitors, as they enable faster processing while requiring less memory. We analyze common binary keypoint descriptors, modify the Fast Retina Keypoint (FREAK) descriptor by using the spatial structure information between keypoints, and propose a multipoint FREAK (MPFREAK) descriptor which improves its feature description ability. As for the slow speed of the nearest neighbor algorithm, we propose a fast feature matching algorithm for hamming space, called MLSH, which modifies the localitysensitive hashing (LSH) algorithm to create a much smaller candidates list. Experimental results show that the proposed feature descriptor is more accurate than other algorithms, and the feature matching algorithm has significant effect and is faster than its competitors.

Key words: binary keypoint descriptor, Fast REtinA Keypoint, localitysensitive hashing, spatial structure, Hamming space