摘要:
图像显著性特征已被广泛地应用于图像分割、图像检索和图像压缩等领域,针对传统算法耗时较长,易受噪声影响等问题,提出了一种基于HSV色彩空间改进的多尺度显著性检测方法。该方法选择HSV色彩空间的色调、饱和度和亮度作为视觉特征,先通过高斯金字塔分解获得三种尺度的图像序列,然后使用改进的SR算法从三种尺度的图像序列中提出每个特征图,最后将这些特征图进行点对点的平方融合和线性融合。与其它算法的对比实验表明,该方法具有较好的检测效果和鲁棒性,能够较快速地检测出图像的显著性区域,能够突显整个显著性目标。