• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

预条件的平方Smith法求解大型Sylvester矩阵方程

蔡兆克,鲍亮,徐冬梅   

  1. (华东理工大学理学院,上海 200237)
  • 收稿日期:2015-09-15 修回日期:2016-03-18 出版日期:2017-08-25 发布日期:2017-08-25
  • 基金资助:

    中央高校基本科研业务费专项资金

A preconditioned squared Smith algorithm
for large Sylvester matrix equations

CAI Zhao-ke,BAO Liang,XU Dong-mei   

  1. (School of Science,East China University of Science and Technology,Shanghai 200237,China)

     
  • Received:2015-09-15 Revised:2016-03-18 Online:2017-08-25 Published:2017-08-25

摘要:

提出了一种预条件的平方Smith算法求解大型连续Sylvester矩阵方程,该算法利用交替方向隐式迭代(ADI)来构造预条件算子,将原方程转换为非对称Stein方程,并在Krylov子空间中应用平方Smith法迭代产生低秩逼近解。数值实验表明,与已知的Jacobi迭代法等算法相比,该算法有更好的迭代效率和收敛精度。
 
 

关键词: 平方Smith算法, Sylvester方程, ADI, 预条件算子, Krylov子空间

Abstract:

We propose a preconditioned squared Smith algorithm to solve large scale continuous-time Sylvester matrix equations. We firstly construct a preconditioner by using the alternating directional implicit (ADI) iteration, and transform the original equation to an equivalent non-symmetric Stein matrix equation. Then we apply the squared Smith algorithm to generate the low-rank approximation form with a Krylov subspace. Numerical experiments show that the algorithm has better iteration efficiency and convergence accuracy in comparison with the Jacobi iteration method.
 

Key words: squared Smith algorithm, Sylvester equation, altermating directional implicit(ADI), preconditioner, Krylov subspace