• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于RSS的无线传感器网络半定规划定位算法研究

丁涛,于洁潇,刘开华,赵宇   

  1. (天津大学电气自动化与信息工程学院,天津 300072)
  • 收稿日期:2016-01-18 修回日期:2016-06-20 出版日期:2017-12-25 发布日期:2017-12-25
  • 基金资助:

    国家自然科学基金(61501322,61401301)

A semi-definite programming approach
to RSS-based localization in WSNs

DING Tao,YU Jie-xiao,LIU Kai-hua,ZHAO Yu   

  1. (School of Electrical Automation and Information Engineering,Tianjin University,Tianjin 300072,China)
  • Received:2016-01-18 Revised:2016-06-20 Online:2017-12-25 Published:2017-12-25

摘要:

在无线传感器网络定位中,基于RSS测量的定位方法是最常用的方法之一。由于传统的最大似然估计(MLE)算法的目标函数具有非线性和非凸性,在应用于无线传感器网络定位时,会产生多个局部最优值。针对该问题提出一种基于半定规划(SDP)的凸优化定位方法。首先采用泰勒级数近似对目标函数进行线性化处理,然后通过引入冗余变量将原无约束优化问题转化为约束优化问题,最后应用半定松弛(SDR)技术将约束优化问题转化为半定规划(SDP)凸优化问题进行求解。通过仿真实验的比较,说明本文提出的优化算法在定位精度、鲁棒性方面优于已有算法。
 

关键词: 无线传感器网络, 接收信号强度, 最大似然估计, 半定松弛, 半定规划

Abstract:

Received signal strength (RSS) based localization is one of the common methods used in wireless sensor networks (WSNs) localization. Due to the non-linearity and non-convexity of the objective function, the traditional maximum likelihood estimator (MLE) can converge to local optimum when applied to WSNs localization. To overcome this problem, we propose a semi-definite programming (SDP) based localization algorithm. Firstly, the Taylor-series approximation is employed to linearize the objective function. Secondly, auxiliary variables are introduced to transform the original problem into a constraint optimization problem. Finally, the semi-definite relaxation (SDR) is applied to transform this constraint optimization problem into a SDP convex optimization problem. Comparison of simulation results shows that the proposed algorithm has higher localization accuracy and is more robust than the existing algorithms.

Key words: