• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

改进的模糊聚类在控制系统故障诊断中的应用

王印松,商丹丹,王艳飞,张婉君   

  1. (华北电力大学控制与计算机工程学院,河北 保定 071000)
  • 收稿日期:2016-04-13 修回日期:2016-09-18 出版日期:2018-02-25 发布日期:2018-02-25

Control system fault diagnosis using improved fuzzy clustering

WANG Yin-song,SHANG Dan-dan,WANG Yan-fei,ZHANG Wan-jun   

  1. (School of Control and Computer Engineering,North China Electric Power University,Baoding 071000,China)
  • Received:2016-04-13 Revised:2016-09-18 Online:2018-02-25 Published:2018-02-25

摘要:

为了提高控制系统中传感器与执行器故障诊断的准确性,结合小波分析特征提取的优势和密度函数加权模糊C-均值聚类具有较好分类效果的特点,提出了一种新的控制系统故障诊断方法。该方法首先利用小波分析对故障信号进行特征提取,降低噪声的影响;然后对特征提取后的数据通过加权模糊C-均值聚类算法,对故障进行识别分类。实验表明,基于小波分析和加权模糊C-均值聚类相结合的方法,不仅可以识别不同部件的故障,而且可以对同一部件的不同类型的故障进行诊断。

 

关键词: 故障诊断, 控制系统, 小波分析, 模糊C-均值聚类, 密度函数加权

Abstract:

In order to improve the fault diagnosis accuracy of the sensor and actuator of the control system, we propose a new control system fault diagnosis method by combining the advantages of wavelet analysis for extracting features with the good clustering effect of the fuzzy C-means algorithm based on a weighted density function. Firstly, we use wavelet analysis to extract the features of fault signals to reduce the influence of noise. Secondly, we employ the fuzzy C-means clustering algorithm to classify the data whose features have been extracted. Experimental results show that the proposed algorithm can not only identify the fault of different components, but also diagnose different types of faults on the same part.
 

Key words: fault diagnosis, control system, wavelet analysis, fuzzy C-means clustering, weighted density function