• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

一种云环境下科学工作流执行计划的优化方法

郭宏乐,陈旺虎,马生俊,李新田,乔保民   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)
  • 收稿日期:2018-01-29 修回日期:2018-08-15 出版日期:2019-03-25 发布日期:2019-03-25
  • 基金资助:

    国家自然科学基金(61462076)

An approach to optimizing the execution plan
of scientific workflows in cloud environment

GUO Hongle,CHEN Wanghu,MA Shengjun,LI Xintian,QIAO Baomin   

  1. (College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2018-01-29 Revised:2018-08-15 Online:2019-03-25 Published:2019-03-25

摘要:

为降低云环境下科学工作流的执行代价,提出了一种执行计划的优化方法。引入猴群算法,依靠对当前执行计划的层内和层间优化,在保证工作流全局截止时间约束的前提下,通过同层任务的逻辑聚合和任务的层间调整,尽可能减少各层任务数的差异,以避免资源的闲置浪费,缩短任务的等待时间。实验表明,该方法与
类似研究相比,可降低资源消耗量,减小总的延迟时间。
 
 

关键词: 科学工作流, 执行优化, 任务分层, 猴群算法, 云环境

Abstract:

In order to reduce the cost of scientific workflow execution in cloud environment, we propose an approach to optimizing the execution plans of scientific workflows in cloud environment. It introduces the monkey group algorithm and relies on the intra-level and inter-level optimization of the current execution plan. Under the premise of ensuring the global deadline of the workflow, through the logical aggregation of the same-level tasks and the inter-level adjustment of the tasks, the difference in the number of tasks at each level is minimized to avoid waste of resources and reduce the waiting time of tasks. Experiments show that compared with the BTS algorithm and the SPSWVC algorithm, the proposed method can reduce resource consumption and the total delay time of tasks.
 

Key words: scientific workflow, execution optimization, task level, monkey group algorithm, cloud environment