• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    

DRI生物免疫视角扩展:机理、方法与仿真研究

杨波   

  1. (江西财经大学信息管理学院,江西 南昌 330013)
  • 收稿日期:2018-04-17 修回日期:2018-07-12 出版日期:2019-03-25 发布日期:2019-03-25
  • 基金资助:

    国家自然科学基金(71640022);江西省自然科学基金管理科学重点项目(2018ACB29004);江西省教育厅科学技术研究重点项目(GJJ180249);江西省高校人文社会科学研究项目(GL18103)

DRI biological immune perspective extension:
Mechanism, method and simulation

YANG Bo   

  1. (School of Information Management,Jiangxi University of Finance and Economics,Nanchang 330013,China)
  • Received:2018-04-17 Revised:2018-07-12 Online:2019-03-25 Published:2019-03-25

摘要:

生物免疫系统是复杂自适应系统,能够快速识别和抵抗外来危险,为企业有效识别动态风险提供了新的思路与方法。梳理相关文献发现,当前有关生物免疫视角下企业动态风险识别研究取得了一定的进展,但尚不存在一套相对成熟的方法体系。借鉴生物免疫的思想,构建了包含动态记忆自动识别和可变模糊自动识别的DRI生物免疫扩展方法体系,并在Netlogo仿真平台进行了多Agent的仿真实验,验证了该方法的动态有效性。该研究延伸和拓展了企业动态风险识别理论,丰富了企业动态风险识别生物免疫机理扩展的相关文献,为其他领域的动态风险识别问题提供了应用指引。

Abstract:

Biological immune system is a complex adaptive system which can quickly identify and resist external risks, thus providing a new idea and method for enterprises to identify dynamic risks effectively. We study the related literature and find that current research on enterprise dynamic risk identification (DRI) under biological immune perspective has achieve a certain progress, however, there is not a set of relatively mature method system. Based on the ideas of  biological immunity, we construct a set of DRI biological immune system extension method, including automatic identification of dynamic memory and automatic identification of variable fuzzy. Multiagent simulations on the Netlogo simulation platform verify the effectiveness of this method. Our study extends and expands the theory of enterprise DRI, enriches the related literature on enterprise DRI under biological immune system mechanism extension, providing application guidance for DRI problem in other fields.
 

Key words: biological immune system (BIS), dynamic risk identification (DRI), BIS extension, simulation