• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 计算机网络与信息安全 • 上一篇    下一篇

抵制轨迹相似性攻击的轨迹(k,e)匿名算法

贾俊杰,黄贺   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)
  • 收稿日期:2018-02-27 修回日期:2018-09-21 出版日期:2019-05-25 发布日期:2019-05-25

A trajectory (k,e)anonymous algorithm
against trajectory similarity attacks

JIA Junjie,HUANG He   

  1. (College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2018-02-27 Revised:2018-09-21 Online:2019-05-25 Published:2019-05-25

摘要:

针对轨迹匿名集中轨迹间的相似性过高导致的轨迹隐私泄露问题,提出抵制轨迹相似性攻击的轨迹(k,e)匿名算法。该算法在预处理过程中,采用轨迹同步化处理
方法减少信息损失;生成匿名集时,将轨迹斜率作为轨迹数据的敏感值,选择至少k条不同轨迹斜率的轨迹来满足轨迹k匿名,并要求每个类中轨迹斜率差异值至少为e,以防止集合中轨迹的斜率相似性过高而导致隐私泄露。实验结果表明,该算法可以有效抵制轨迹相似性攻击,在减少信息损失的同时增强了轨迹数据可用性,更好地实现了轨迹隐私保护。
 

关键词: 隐私保护;轨迹匿名;斜率差异;轨迹(k, e)匿名算法

Abstract:

Aiming at the problem of trajectory privacy leakage caused by the high similarity between the anonymous centralized trajectories, we propose a trajectory (k,e)anonymous algorithm to resist trajectory similarity attacks.  In the preprocessing process, the algorithm adopts trajectory synchronization to reduce information loss. In clustering process, the trajectory slope is regarded as the sensitive value of trajectory data, and at least k trajectories with different trajectory slopes are selected to satisfy the trajectory k-anonymity. To prevent the privacy leakage caused by the high slope similarity of trajectories in the set, the trajectory slope difference value in each class should be at least e. Experimental results show that the proposal can effectively resist trajectory similarity attacks, reduce information loss while enhancing the availability of trajectory data, and achieve better trajectory privacy protection.
 

Key words: privacy preservation;trajectory anonymity;slope diversity;trajectory(k, e) anonymous algorithm