摘要:
动态语言可以利用程序运行时获取的动态信息,指导程序进行各种优化。但是,现有的Java虚拟机没有将运行过程中收集的信息有效利用,而是在运行结束后直接丢弃,下一次执行程序的时候重新监测、收集、优化需要的信息。基于HotSpot虚拟机提出一种动静结合的自适应优化方法,将运行过程中优化对象迭代搜索到的最佳参数或者信息保存到资源库中;能够从资源库中学习获得适合当前程序的最佳参数或选项,可有效地利用运行过程中积累的数据;资源分析是静态且离线的,不占用应用程序运行的开销;迭代学习的过程中,通过避免冗余实例入库以及从库中剔除噪声实例,保证资源库学习过程的精度与效率。实验表明,该框架对指导Java虚拟机在不同的平台上自适应优化具有一定的实用性。
张海军1,郑艳2,叶俊1,白书敬1. 一种基于Java虚拟机的动静结合自适应优化方法[J]. 计算机工程与科学.
ZHANG Haijun1,ZHENG Yan2,YE Jun1,BAI Shujing1.
A static and dynamic adaptive optimization
method based on Java virtual machine
[J]. Computer Engineering & Science.