摘要:
在海量短文本中由于特征稀疏、数据维度高这一问题,传统的文本分类方法在分类速度和准确率上达不到理想的效果。针对这一问题提出了一种基于Topic N-Gram(TNG)特征扩展的多级模糊最小-最大神经网络(MLFM-MN)短文本分类算法。首先通过使用改进的TNG模型构建一个特征扩展库并对特征进行扩展,该扩展库不仅可以推断单词分布,还可以推断每个主题文本的短语分布;然后根据短文本中的原始特征,计算这些文本的主题倾向,根据主题倾向,从特征扩展库中选择适当的候选词和短语,并将这些候选词和短语放入原始文本中;最后运用MLFM-MN算法对这些扩展的原始文本对象进行分类,并使用精确率、召回率和F1分数来评估分类效果。实验结果表明,本文提出的新型分类算法能够显著提高文本的分类性能。
文武1,2,3,李培强1,2,郭有庆1,2. 基于TNG特征扩展的MLFM-MN短文本分类算法[J]. 计算机工程与科学.
WEN Wu1,2,3,LI Pei-qiang1,2,GUO You-qing1,2.
An MLFM-MN short text classification
algorithm based on TNG feature extension
[J]. Computer Engineering & Science.