摘要:
由于硬件资源的更新换代,集群中各个节点的计算能力会变得不一致。集群异构的出现导致集群计算资源不均衡。目前Spark大数据平台在任务调度时未考虑集群的异构性以及节点资源的利用情况,影响了系统性能的发挥。构建了集群节点的评价指标体系,提出利用节点的优先级来表示其计算能力。提出的节点优先级调整算法能够根据任务执行过程中节点的状态动态调整各个节点的优先级。基于节点优先级的Spark动态自适应调度算法(SDASA)则根据实时的节点优先级值完成任务的分配。实验表明,SDASA能够缩短任务在集群中的执行时间,从而提升集群整体计算性能。
胡亚红1,盛夏2,毛家发1. 资源不均衡Spark环境任务调度优化算法研究[J]. 计算机工程与科学.
HU Ya-hong1,SHENG Xia2,Mao Jia-fa1.
Task scheduling optimization in Spark
environment with unbalanced resources
[J]. Computer Engineering & Science.