摘要:
对网络上海量的文本数据进行情感分析,可以更好地挖掘网民行为规律、帮助决策机构了解舆情倾向和改善商家服务质量。在实际表达中,人们除了采用带有明显情感词的主观表达外,还采用含蓄的方式表达自己的主观倾向。带有显式情感词的文本情感分析作为自然语言处理领域的基础性研究任务,已经取得了丰富的研究成果。然而,针对隐式文本的情感分析技术还处于起步阶段。与显式情感分析任务相比,隐式情感分类任务更加困难。隐式表达文本具有中立性表达、缺乏情感词和上下文依赖的特点,使得传统的文本分类方法不再适用。针对以上问题,采用word2vec词嵌入技术提取文本特征,分别进行了基于TextCNN、LSTM和BiGRU 分类模型的研究。在各个深度分类模型研究基础上,还进行了融合注意力机制的分类模型研究。针对隐式表达对上下文内容依赖的特点,设计了一种融合上下文语义特征和注意力机制的分类模型,增强了部分中立性隐式表达句的分类效果。最后在SMP2019公开数据集上进行了实验,取得了比上述几种基础深度网络模型与融合注意力机制分类模型更好的分类效果。
潘东行,袁景凌,李琳,盛德明. 一种融合上下文特征的中文隐式情感分类模型[J]. 计算机工程与科学.
PAN Dong-hang,YUAN Jing-ling,Li Lin,SHENG De-ming. null[J]. Computer Engineering & Science.