• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于用户行为的新闻推荐算法的研究

李增,刘羽,李诚诚   

  1. (桂林理工大学信息科学与工程学院,广西 桂林 541006)
  • 收稿日期:2019-09-03 修回日期:2019-11-01 出版日期:2020-03-25 发布日期:2020-03-25

A news recommendation algorithm based on user behavior

LI Zeng,LIU Yu,LI Cheng-cheng   

  1. (School of Information Science and Engineering,Guilin University of Technology,Guilin 541006,China)
  • Received:2019-09-03 Revised:2019-11-01 Online:2020-03-25 Published:2020-03-25

摘要:

为了提高新闻推荐的效率和准确度,减少相似内容的反复推荐,通过研究用户行为和分析用户新闻浏览行为日志,采用以马尔科夫算法为主要算法的新闻推荐算法,辅以协同过滤算法和基于内容的推荐算法,建立了马尔科夫模型,并应用在智能新闻推荐上。通过对比传统的推荐算法,测试结果表明,该模型在准确度和执行效率上有明显的提升,其功能更加智能。
 

关键词: 马尔科夫算法, 行为日志, 准确度, 新闻推荐

Abstract:

In order to improve the efficiency and accuracy of news recommendation and reduce the repeated recommendation of similar content, through the research of user behavior and the analysis of user's news browsing behavior log, a news recommendation algorithm with Markov algorithm as the main algorithm is adopted. The algorithm is supplemented by the collaborative filtering algorithm and the content-based recommendation algorithm to establish a Markov model, thus realizing the application in intelligent news recommendation. Test results show that, compared with the traditional recommendation algorithm, the algorithm significantly improves the accuracy and execution efficiency, and its function is more intelligent.
 

Key words: Markov algorithm, behavior log, accuracy, news recommendation