• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 计算机网络与信息安全 • 上一篇    下一篇

虚拟空间中社会分层行为研究

马满福1,2,员欣淼1,2,李勇1,2,刘元喆1,2,王常青3   

  1. (1.西北师范大学计算机科学与工程学院, 甘肃 兰州 730070;2.甘肃省物联网工程研究中心,甘肃 兰州 730070;
    3.中国互联网络信息中心互联网基础技术开放实验室,北京 100190)
  • 收稿日期:2019-07-28 修回日期:2020-01-03 出版日期:2020-05-25 发布日期:2020-05-25
  • 基金资助:

    国家自然科学基金(71764025,61863032,61662070);甘肃省高等学校科学研究项目(2018A-001);甘肃省教育科学规划课题研究项目(GS[2018]GHBBKZ021,GS[2018]GHBBKW007)

Social stratification behavior in virtual space

MA Man-fu1,2,YUN Xin-miao1,2,LI Yong1,2,LIU Yuan-zhe1,2,WANG Chang-qing3   

  1. (1.College of Computer Science & Engineering,Northwest Normal University,Lanzhou 730070;
    2.IoT Center of Gansu,Lanzhou 730070;
    3.DNSLAB,China Internet Network Information Center,Beijing 100190,China)
     
  • Received:2019-07-28 Revised:2020-01-03 Online:2020-05-25 Published:2020-05-25

摘要:

大量的人类行为发生在互联网上,互联网已成为与真实空间相对应的最重要的虚拟空间。传统虚拟空间中的社会分层研究基于网络信息资源占有的机会和能力等客观指标,并未涉及用户使用网络资源的具体行为及信息的内容和性质等因素。利用中国互联网络信息中心提供的用户在线行为大数据,从在线时间和上网内容两方面考察并分析了不同阶层的用户在虚拟空间中上网行为的特征和差异性。研究发现不同阶层的用户在虚拟空间中的停留时间和注意力聚焦点都大不相同。较高阶层用户能更好地利用网络资源办公和购物,且在虚拟空间中的停留时间具有相对稳定性。而较低阶层用户将大量的注意力消耗在休闲娱乐类应用上,且停留时间不稳定。此外,本文利用基于word2vec的神经网络模型(W2V-BP),对用户在虚拟空间中的上网行为数据进行社会分层识别,识别准确率达到90.22%,表明虚拟空间中存在能够区分社会分层的行为特征。

 

关键词: 用户行为大数据, 虚拟空间, 社会分层, 注意力聚焦点, W2V-BP模型

Abstract:

A large number of human behaviors occur on the Internet, which has become the most important virtual space corresponding to the real space. Social stratification research in the traditional virtual space is based on objective indicators such as the opportunity and ability of network information resources possession, but does not involves the specific behavior of users using network resources and the content and nature of information and other factors. This paper makes use of the big data of users’ online behaviors provided by China Internet Network Information Center, investigates and analyzes the characteristics and differences of users’ online behaviors of different levels in the virtual space from two aspects of online time and content. The study finds that different levels of users’ time spent in the virtual space and their attention focuses are very different. Higher level users can make better use of network resources to work and shopping, and stay in the virtual space has a relatively stable time. However, lower level users spend a lot of attentions on leisure and entertainment applications, and the stay time is not stable. In addition, this paper uses the neural network model (W2V-BP) based on Word2vec to conduct social stratification recognition of users' online behavior data in the virtual space, and the recognition accuracy reaches 90.22%, indicating that there are behavioral characteristics in the virtual space that can distinguish social stratification.


 

Key words: big data of user behavior, virtual space, social stratification, attention focus, W2V-BP model