摘要:
大量的人类行为发生在互联网上,互联网已成为与真实空间相对应的最重要的虚拟空间。传统虚拟空间中的社会分层研究基于网络信息资源占有的机会和能力等客观指标,并未涉及用户使用网络资源的具体行为及信息的内容和性质等因素。利用中国互联网络信息中心提供的用户在线行为大数据,从在线时间和上网内容两方面考察并分析了不同阶层的用户在虚拟空间中上网行为的特征和差异性。研究发现不同阶层的用户在虚拟空间中的停留时间和注意力聚焦点都大不相同。较高阶层用户能更好地利用网络资源办公和购物,且在虚拟空间中的停留时间具有相对稳定性。而较低阶层用户将大量的注意力消耗在休闲娱乐类应用上,且停留时间不稳定。此外,本文利用基于word2vec的神经网络模型(W2V-BP),对用户在虚拟空间中的上网行为数据进行社会分层识别,识别准确率达到90.22%,表明虚拟空间中存在能够区分社会分层的行为特征。
马满福1,2,员欣淼1,2,李勇1,2,刘元喆1,2,王常青3. 虚拟空间中社会分层行为研究[J]. 计算机工程与科学.
MA Man-fu1,2,YUN Xin-miao1,2,LI Yong1,2,LIU Yuan-zhe1,2,WANG Chang-qing3. Social stratification behavior in virtual space[J]. Computer Engineering & Science.