• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于改进D-S证据理论的室内环境控制决策系统

谢苗苗1,李华龙2   

  1. (1.安徽大学江淮学院,安徽 合肥 230031;2.中国科学院合肥智能机械研究所,安徽 合肥 230031)
  • 收稿日期:2019-08-04 修回日期:2019-11-25 出版日期:2020-05-25 发布日期:2020-05-25
  • 基金资助:

    安徽大学江淮学院校级重点资助项目(2018KJ0001)

An indoor environment control decision-making
system based on improved D-S evidence theory

XIE Miao-miao1,LI Hua-long2   

  1. (1.Jianghuai College,Anhui University,Hefei 230031;
    2.Institute of Intelligent Machines,Chinese Academy of Sciences,Hefei 230031,China)
  • Received:2019-08-04 Revised:2019-11-25 Online:2020-05-25 Published:2020-05-25

摘要:

针对室内环境因子多且相互作用关系复杂,影响室内环境舒适度的控制精准决策,设计了一种基于改进D-S证据理论的室内环境控制决策系统。首先采用箱线图法和均值替代法检测修复异常采集数据,然后利用距离自适应加权融合算法实现同类传感器数据一级融合,最后利用改进D-S证据理论算法,实现全局融合决策。实验结果表明,改进D-S证据理论算法能够有效避免冲突证据带来的融合决策误差,系统可以实现室内环境控制的精准决策,融合决策精度高,具有一定的推广应用价值。

关键词: 室内环境参数;箱线图, 平均证据;距离自适应加权;D-S证据理论

Abstract:

In order to solve the problem that there are many indoor environment factors and the interaction relationship is complex, which affects the precise decision-making of indoor environment comfort, an indoor environment control decision-making system based on improved D-S evidence theory is designed. Firstly, the boxplot method and the mean substitution method are used to detect and repair the abnormal collected data. Secondly, the distance adaptive weighted fusion algorithm is used to realize the first level fusion of similar sensor data. Finally, the improved D-S evidence theory algorithm is adopted to realize the global fusion decision. The experimental results show that the improved D-S evidence theory algorithm can effectively avoid the fusion decision error caused by the conflict evidence. The system can realize the precise decision of indoor environment control and the fusion decision accuracy is high, which has a certain promotion and application value.
 

Key words: environmental parameters, boxplot, average evidence, distance adaptive weighting, D-S evidence theory