摘要:
为了解决目前所提出的多标签分类算法仍然存在分类精度低和计算复杂度高的问题,提出了一种基于质心的多标签引力模型(ML-GM)。在训练阶段,通过计算文档与类的质心之间的相似性来获得相似性区间。 在测试阶段,通过比较未定义文档和类质心之间的相似性是否在相似性区间内来进行多标签分类。该模型通过引入质心分类器和引力模型(GM)解决了计算复杂度高、分类精度低的问题。在实验中使用了雅虎数据集,结果表明,ML-GM在平均精确度、AUC、1-错误率和汉明损失上都有优越性。
李校林, 王成, . 一种基于质心的多标签文本分类模型研究[J]. 计算机工程与科学.
LI Xiao-lin, WANG Cheng, .
A multi-label text classification
model based on centroid
[J]. Computer Engineering & Science.