摘要:
谱社区检测算法多基于结构对网络进行划分,往往受限于划分数量且难以控制重叠程度。设计了面向属性网络的谱社区检测算法,可将属性网络划分为任意数量的可重叠社区并有效发现离群点。具体地,首先,从结构和属性两方面综合考虑,基于加权模块度设计了最大化到节点向量化的分区映射方法;其次,给出簇中心向量的初始选择策略,并将其融合在面向属性网络的重叠度和离群度制约中,实现重叠社区的发现;再次,设计节点分配策略,计算节点与簇中心向量的内积,将节点分配给具有最高内积的社区;最后,结合节点隶属情况,高效地在属性网络中检测出结构紧密、可重叠和具有离群点的社区。此外,将本文算法应用于现实世界的多个网络,验证了本文算法的有效性和效率。
李青青1,马慧芳1,2,吴玉泽3,刘海姣1. 面向属性网络的可重叠多向谱社区检测算法[J]. 计算机工程与科学.
LI Qing-qing1,MA Hui-fang1,2,WU Yu-ze3,LIU Hai-jiao1.
An overlapping multiway spectral community
detection method for attributed network
[J]. Computer Engineering & Science.