摘要: 多粒度粗糙集的目标概念是一种由多个二元关系诱导的粒结构近似,是粗糙集领域的一个有价值的研究方向,在实际中得到了广泛的应用。然而,当数据集的规模很大时,会出现大量的未标记数据,计算目标概念的近似时需要计算所有对象的等价类,而且需要花费大量的时间来描述目标概念的近似以及复杂的计算过程,因此提出了局部广义多粒度粗糙集模型。首先通过引入特征函数来定义下近似和上近似;其次提出了一种用矩阵求解局部广义多粒度粗糙集下近似和上近似的方法,进一步研究了它们的性质;最后通过实例来验证所提模型的有效性,并给出了求局部广义多粒度粗糙集下近似的算法。此模型可以充分利用目标概念中的数据信息来处理数据,同时可以节省大量的计算时间。