计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (09): 1632-1639.
崔莹
CUI Ying
摘要: 以政外领域新闻数据为研究基础,针对基于传统模式匹配事件抽取存在的提取困难、召回率和准确率低,基于深度学习方法在特定领域事件抽取中抽取准确率不高等问题,提出基于相似义原和依存句法的政外领域事件抽取方法。通过计算义原描述式的相似性,扩展事件触发词表,为精准识别事件类型奠定基础;进一步基于模式的指导,结合文本依存句法分析实现对于政外领域事件元素的识别和抽取,从而达到对事件的结构化描述。抽取结果准确率明显优于基于深度神经网络的端到端事件抽取模型抽取结果,并对其他特定领域事件抽取具有可借鉴性和实施性。最后对事件抽取面临的主要困难和应用前景进行了探讨和总结。