• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (03): 465-472.

• 图形与图像 • 上一篇    下一篇

基于EEG微状态方法的视觉想象识别研究

李昭阳,伏云发   

  1. (昆明理工大学信息工程与自动化学院,云南 昆明 650500)

  • 收稿日期:2019-11-18 修回日期:2020-06-03 接受日期:2021-03-25 出版日期:2021-03-25 发布日期:2021-03-26
  • 基金资助:
    国家自然科学基金(8177071438,6176020268)

Identification of visual imagery based on EEG microstate method

LI Zhao-yang,FU Yun-fa   

  1. (School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)

  • Received:2019-11-18 Revised:2020-06-03 Accepted:2021-03-25 Online:2021-03-25 Published:2021-03-26

摘要: 运动想象MI是基于想象的脑机交互BCI中常用的任务,但MI不易习得和控制,且存在“BCI盲”现象,使得该类BCI的实用化受限。
针对较易习得和控制的视觉想象VI任务进行识别,旨在构建基于VI的BCI(VI-BCI)。招募了15名被试者参加2种动态图像的视觉想象任务并采集脑电EEG数据;然后采用EEG微状态方法研究了这2种VI任务诱发的EEG在微状态时间参数上的差异,并选用差异显著的微状态时间参数构建特征向量;最后采用SVM对2类VI任务进行识别。结果显示提取微状态特征所取得的最高、最低和平均分类精度分别为90%,56%和80.6±2.58%。表明微状态方法可以有效提取VI相关EEG特征并得到具有可比性的分类精度,可望为构建相对较新的在线VI-BCI提供思路。

关键词: 视觉想象, 微状态, 脑电, 脑机交互

Abstract: Motor imagery (MI) is a common task in brain computer interaction (BCI), but MI is not easy to acquire and control, and there is a phenomenon of "BCI blindness", which limits the practicality of this type of BCI. This paper aims at the identification of Visual Imagery (VI) tasks that are easier to acquire and control, and aims to build VI-based BCI (VI-BCI). 15 subjects were recruited to participate in two kinds of dynamic picture VI tasks, and their EEG data were collected. Then, the EEG microstate method is used to study the differences in microstate time parameters between the two VI tasks, and the eigenvectors are constructed by microstate time parameters with significant differences. Finally, support vector machine (SVM) is used to classify the two kinds of VI tasks. The results show that the highest, the lowest and the average classification accuracy of microstate are 90%, 56% and 80.6 2.58%, respectively. This study shows that the microstate method can effectively extract VI-related EEG features and obtain comparable accuracy. The work is expected to provide ideas for the construction of a new online VI-BCI.

Key words: visual imagery, microstate, EEG, brain computer interaction