• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (08): 1479-1487.

• 人工智能与数据挖掘 • 上一篇    下一篇

求解带容量和时间窗约束车辆路径问题的改进蝙蝠算法

张瑾,洪莉,戴二壮   

  1. (河南大学计算机与信息工程学院,河南 开封 475004)
  • 收稿日期:2020-03-07 修回日期:2020-07-11 接受日期:2021-08-25 出版日期:2021-08-25 发布日期:2021-08-24
  • 基金资助:
    国家自然科学基金(41801310)

An improved bat algorithm for the vehicle routing problem with time windows and capacity constraints

ZHANG Jin,HONG Li,DAI Er-zhuang   

  1. (School of Computer and Information Engineering,Henan University,Kaifeng 475004,China)
  • Received:2020-03-07 Revised:2020-07-11 Accepted:2021-08-25 Online:2021-08-25 Published:2021-08-24

摘要: 带时间窗和容量约束的车辆路径问题是车辆路径问题重要的扩展之一,属于NP难题,精确算法的求解效率较低,且对于较大规模问题难以在有限时间内给出最优解。为了满足企业和客户快速有效的配送需求,使用智能优化算法可以在有限的时间内给出相对较优解。
研究了求解带容量和时间窗约束车辆路径问题的改进离散蝙蝠算法,为增加扰动机制,提高搜索速度和精度,在对客户点按其所在位置进行聚类的基础上,在算法中引入了变步长搜索策略和两元素优化方法进行局部搜索。仿真实验结果表明,所设计算法具有较高寻优能力和较强的实用价值。


关键词: 离散蝙蝠算法, 车辆路径问题, 时间窗和容量约束, 变步长搜索, K-means运算

Abstract: The vehicle routing problem with time windows and capacity constraints is one of the most important extensions of the vehicle routing problem, which belongs to the NP hard problem. The exact algorithm has low efficiency, which cannot give the optimal solution in limited time especially for large scale problems. In order to meet the rapid and effective distribution needs of enterprises and customers, intelligent optimization algorithms are usually adopted since they can give relatively optimal solutions in limited time. In this paper, an improved discrete bat algorithm for vehicle routing problem with capacity and time windows constraints problem is studied. The variable step size search strategy and the 2-opt optimization method are introduced into the algorithm for local search based on the clustering of customer points according to their locations, so as to increase the disturbance mechanism and improve the search speed and accuracy. Simulation results show that the designed algorithm has better optimization ability and practical value.

Key words: discrete bat algorithm, vehicle routing problem, time windows and capacity constraints, variable step size search, K-means operation