计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (11): 1910-1919.
张开放,苏华友,窦勇
ZHANG Kai-fang,SU Hua-you,DOU Yong
摘要: 多分类任务准确率评估对评判模型的分类效果具有重要的理论意义和应用价值。针对机器学习领域的多分类任务,在现有方法的基础上,通过拓展和迁移应用,给出一种新的评估方法。为了准确评估多分类任务模型的分类效果,将遥感图像分类效果评估方法引入多分类任务。针对多分类任务的实际特点,对该方法进行了改进与推广,以更好地评估分类器效能。基于MNIST手写字符集识别任务和CIFAR-10数据集分类任务的实验结果表明,同样是基于混淆矩阵进行计算,与现有的评估方法相比,该方法可以同时给出分类器整体的分类效果和单个类别的分类效果,对于改进训练过程有一定的指导意义。另一方面,该方法可以推广到任意的分类任务分类效果评估工作中,具有较好的应用前景。