计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (11): 2020-2026.
苏小会,张玉西,徐淑萍,尚煜
SU Xiao-hui,ZHANG Yu-xi,XU Shu-ping,SHANG Yu
摘要: 为解决传统聚类算法初始中心易陷入局部最优、耗时长的问题,提出一种改进的K-means聚类优化算法。该算法引入最大最小距离和加权欧氏距离,从剩余聚类点距离均值和出发,避免孤立点和边缘数据的影响。利用比重法对主成分进行改进,以由此获得的特征影响因子作为初始特征权重,构建一种加权欧氏距离度量。根据特征贡献率对聚类的影响,筛选具有代表性的特征因子凸显聚类效果,最终合成汽车行驶工况,分析瞬时油耗。结果表明,所提算法构建行驶工况的速度-加速度联合分布差异值仅为105%,比传统K-means聚类省时44.2%,行驶工况拟合度较高,能反映实际车辆的运行特征及油耗。