• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (01): 184-190.

• 人工智能与数据挖掘 • 上一篇    

一种新型的樽海鞘群算法及其应用

谢聪1,郑洪清2   

  1. (1.广西大学行健文理学院,广西 南宁 530005;2.广西外国语学院信息工程学院,广西 南宁 530222)

  • 收稿日期:2020-08-16 修回日期:2020-10-15 接受日期:2022-01-25 出版日期:2022-01-25 发布日期:2022-01-13
  • 基金资助:
    广西中青年基金(2020KY54019)

A novel salp swarm algorithm and its application

XIE Cong1,ZHENG Hong-qing2   

  1. (1.Xingjian College of Science and Liberal Arts,Guangxi University,Nanning 530005;

    2.College of Information Engineering,Guangxi University of Foreign Languages,Nanning 530222,China)

  • Received:2020-08-16 Revised:2020-10-15 Accepted:2022-01-25 Online:2022-01-25 Published:2022-01-13

摘要: 为了解决樽海鞘群算法SSA在寻优过程中存在收敛速度慢、计算精度差等问题,提出一种新型的樽海鞘群算法NSSA。
首先分析SSA中樽海鞘在追随领导者过程中的不足,然后借鉴灰狼优化算法中追随头狼的思想来改进樽海鞘追随领导者的方式。在23个基准函数上对NSSA与其他算法进行性能比较,并把该算法应用于图像匹配之中。所有实验结果表明,NSSA具有更好的收敛速度、计算精度和鲁棒性。


关键词: 樽海鞘群算法, 函数优化, 图像匹配, 灰狼算法

Abstract: Aiming at the shortcomings of slow convergence speed and poor calculation accuracy in the optimization process of Salp Swarm Algorithm (SSA), a Novel Salp Swarm Algorithm is proposed (NSSA). Firstly, the deficiencies of SSA in the process of following leaders are analyzed. learning from the idea of grey wolves following the header in grey wolf algorithm, the way of salps following the leader is improved. Performance comparison between NSSA and other algorithms is conducted on 23 benchmark functions, and the algorithm is applied in image matching. All experimental results show that NSSA has better convergence speed, calculation accuracy and robustness.


Key words: salp swarm algorithm, function optimization, image matching, grey wolf algorithm