计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 454-462.
杨凡亿1,马慧芳1,2,闫彩瑞1,宿云1
YANG Fan-yi1,MA Hui-fang1,2,YAN Cai-rui1,SU Yun1
摘要: 属性网络嵌入旨在学习网络中节点的低维表示,具有拓扑和属性相似的节点在嵌入空间彼此接近。注意力机制能有效学习网络中节点与其邻居的相对重要性并基于邻居重要性聚合节点表示。据此,提出一种在属性网络中融合双层注意力机制的节点嵌入算法NETA,可以有效地实现属性网络嵌入。该算法首先从拓扑结构捕获直接邻居,基于属性关系捕获间接邻居,并在此过程中考虑节点邻居的相对重要性。具体地,首先捕获节点的直接邻居和间接邻居,然后设计节点级注意力分别聚合直接邻居表示和间接邻居表示,最后设计语义级注意力对2种嵌入表示融合得到最终嵌入。在人工数据集和真实数据集上的大量实验验证了本文算法的有效性。