• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 509-515.

• 人工智能与数据挖掘 • 上一篇    下一篇

用于绝缘子故障检测的CycleGAN小样本库扩增方法研究

崔克彬,潘锋   

  1. (华北电力大学控制与计算机工程学院, 河北 保定 071003)

  • 收稿日期:2020-04-29 修回日期:2020-10-24 接受日期:2022-03-25 出版日期:2022-03-25 发布日期:2022-03-24
  • 基金资助:
    河北省自然科学基金(F2018502080)

A CycleGAN small sample library amplification method for faulty insulator detection

CUI Ke-bin,PAN Feng#br#   

  1. (School of Control and Computer Engineering,North China Electrical Power University,Baoding 071003,China)
  • Received:2020-04-29 Revised:2020-10-24 Accepted:2022-03-25 Online:2022-03-25 Published:2022-03-24

摘要: 在深度学习的训练中,绝缘子检测需要大量的故障绝缘子,而实际难以获得大量故障绝缘子数据。生成对抗网络为扩增训练样本提供了可行的解决办法。在循环一致性生成对抗网络(CycleGAN)结构上补充缺陷绝缘子样本,通过更改损失函数来优化模型,将正向生成器生成的图像,输入到反向生成器,保持样本整体轮廓的同时,增加了差异性。将改进的CycleGAN模型与其他GAN模型在SSD目标检测方法中进行比较,结果表明改进的CycleGAN扩增数据集的方法相较于其他扩增方法在绝缘子掉串检测识别率上有明显提升。

关键词: 循环一致性生成对抗网络, 绝缘子, 样本扩增, 风格转换

Abstract: In deep learning training, insulator detection requires a large number of faulty insulators. It is actually difficult to obtain a large amount of faulty insulator data. Generative Adversarial Network (GAN) provides a feasible solution for augmenting training samples. This paper supplements the defective insulator samples in the structure of the Cycle-consistent GAN (CycleGAN), optimizes the model by changing the loss function, and inputs the image synthesized by the forward generator to the reverse generator, thus maintaining the overall outline of the sample while adding the difference. In the SSD (Single Shot Detector) target detection experiment, the method of using the improved CycleGAN model to expand the dataset was compared with other GAN models. The results show that the method of using the improved CycleGAN to expand the dataset significantly improves the recognition rate of insulator drop detection compared with other expansion methods. 

Key words: cycle-consistent generative adversarial network, insulator, data augmentation, style transfer