• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (04): 692-698.

• 图形与图像 • 上一篇    下一篇

基于OSE-dResnet网络的列车底部零件检测算法

李利荣1,2,王子炎1,张开1,杨荻椿1,熊炜1,2,巩朋成1,2   

  1. (1.湖北工业大学电气与电子工程学院,湖北 武汉 430068;
    2.湖北工业大学太阳能高效利用湖北省协同创新中心,湖北 武汉 430068)
  • 收稿日期:2020-09-25 修回日期:2021-01-21 接受日期:2022-04-25 出版日期:2022-04-25 发布日期:2022-04-20
  • 基金资助:
    国家自然科学基金(61601178,61901165);湖北工业大学博士启动基金(BSQD2017009)

A train bottom parts detection algorithm based on OSE-dResnet neural networks

LI Li-rong1,2,WANG Zi-yan1,ZHANG Kai1,YANG Di-chun1,XIONG Wei1,2,GONG Peng-cheng1,2   

  1. (1.School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068;
    2.Hubei Collaborative Innovation Center for High-Efficiency Utilization of Solar Energy,
    Hubei University of Technology,Wuhan 430068,China)

  • Received:2020-09-25 Revised:2021-01-21 Accepted:2022-04-25 Online:2022-04-25 Published:2022-04-20

摘要: 针对列车底部零件难以检测的问题,提出了一种基于OSE-dResnet网络的列车底部零件检测算法。为了增加特征提取的丰富度与准确性,以Resnet50网络为基础,通过增加跨层传输来强化特征的提取;其次,在特征提取网络上嵌入OSEnet模块,利用全局特征增强有益特征通道;最后,将不同尺度特征层进行融合,实现特征信息互补。实验结果表明:引入OSEnet模块和d-Resnet网络后的算法对列车底部零件具有很好的检测效果,在测试数据集上对所提算法进行验证,mAP达到了98.77%。

关键词: 深度学习, 目标检测, d-Resnet, OSEnet, 多尺度特征融合

Abstract: Aiming at the difficulty of the train bottom parts detection, a detection algorithm based on OSE-dResnet network is proposed. In order to increase the richness and accuracy of feature extraction, feature extraction is enhanced by increasing cross-layer transmission, based on the Resnet50 network. Second, an OSEnet module is embedded into the feature extraction network to enhance beneficial feature channels with global features. Finally, the feature layers of different scales are fused to achieve the feature information complementation. The experimental results show that the algorithm combining the OSEnet module and the d-Resnet network has a good detection effect on the bottom parts of the train. The proposed algorithm is validated on the test datasets, and mAP reaches 98.77%.



Key words: deep learning, object detection, d-Resnet, OSEnet, muti-scale feature fusion