计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (04): 713-722.
皇甫斐斐1,杨阳2,邓晓懿2,3
HUANGFU Fei-fei1,YANG Yang2,DENG Xiao-yi2,3
摘要: 社区发现能够揭示真实社会网络的拓扑结构和重要节点。由于具有线性时间复杂度,无需定义目标函数及目标参数,标签传播算法(LPA)作为经典社区发现算法被广泛应用在学术和实践领域。针对LPA算法更新顺序的无序性和标签选择的随机性,提出基于节点影响力的理性节点标签传播算法(RLPBNI)。将节点影响力排序作为更新顺序,引入理性节点概念进行标签选择,并定义重叠度进行社区再降维。实验结果表明,与其他对比算法相比,RLPBNI算法不但可有效提高社区划分精度,且更容易发现混合程度较高的网络中隐藏的社区。