计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (04): 737-745.
马冬梅,李鹏辉,黄欣悦,张倩,杨鑫
MA Dong-mei,LI Peng-hui,HUANG Xin-yue,ZHANG Qian,YANG Xin
摘要: 针对目前高精度的语义分割模型普遍存在计算复杂度高、占用内存大,难以在硬件存储和计算力有限的嵌入式平台部署的问题,从网络的参数量、计算量和性能3个方面综合考虑,提出一种基于改进DeepLabV3+的高效语义分割模型。该模型以MobileNetV2为骨干网络,在空洞空间金字塔池化(ASPP)模块中并联混合带状池化(MSP),以获取密集的上下文信息;在解码部分引入有效通道注意力(ECA)模块,以恢复更清晰的目标边界;将深度可分离卷积应用到ASPP模块和解码器中用于压缩模型。在PASCAL VOC 2012数据集上的实验中,该模型的网络参数量为4.5×106,浮点计算量为11.13 GFLOPs,平均交并比为72.07%,在计算效率和分割精度之间达到了良好的均衡。