• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (04): 753-760.

• 人工智能与数据挖掘 • 上一篇    

特征直连与结构化约束的多视图子空间聚类

张翼飞,邓秀勤,王卓薇   

  1. (广东工业大学数学与统计学院,广东 广州 510006)

  • 收稿日期:2021-10-14 修回日期:2021-12-07 接受日期:2022-04-25 出版日期:2022-04-25 发布日期:2022-04-21
  • 基金资助:
    广东省科技计划(2021A1414030004);广东省基础与应用基础研究(2020A1515011409);广东省重点研发计划(2019B010109001);高分辨率对地观测重大专项省域产业化应用项目(83-Y40G33-9001-18/20)

Feature concatenation and structured constraints based multi-view clustering

ZHANG Yi-fei,DENG Xiu-qin,WANG Zhuo-wei   

  1. (School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou 510006,China)
  • Received:2021-10-14 Revised:2021-12-07 Accepted:2022-04-25 Online:2022-04-25 Published:2022-04-21

摘要: 多视图子空间聚类作为处理多视图数据的聚类算法,其目的在于学习到一个共识的子空间后用于聚类。但是,现存的多视图子空间聚类算法只是将目标放在了原有的多个视图上,忽略了通过特征直连得到的数据。提出的FSMC算法使原有的多个视图与特征直连视图相互学习,通过误差重构和结构化约束子空间得到一个更加合适的子空间表示,同时还考虑了多视图与特征直连视图的权重关系。最后,在4个基准数据集上进行实验,验证了算法的有效性。

关键词: 多视图子空间, 共识矩阵, 特征直连, 结构化约束

Abstract: Multi-view subspace clustering, as a clustering algorithm for multi-view data, aims to learn a consensus subspace for clustering. However, the existing multi-view clustering algorithms only focus on the original multi-view, ignoring the data obtained by direct feature concatenation. The algorithm proposed in this paper focuses on the mutual learning of the original multi-view and the feature concatenation view, and obtains a more suitable subspace representation through error reconstruction and structural constraint subspace. At the same time, the weight relationship between multi-view and feature concatenation view is also considered. Finally, experiments are conducted on four benchmark datasets to verify the effectiveness of the algorithm. 


Key words: multi-view subspace, consensus matrix, feature concatenation, structured constraint