• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (05): 924-932.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于多图卷积神经网络和注意力机制的学术新星预测方法

单辉1,丁成鑫1,赵中英1,周明成1,贾霄生1,李超1,2   

  1. (1.山东科技大学计算机科学与工程学院,山东 青岛 266590;2.山东科技大学电子信息工程学院,山东 青岛 266590)
  • 收稿日期:2021-09-29 修回日期:2021-11-07 接受日期:2022-05-25 出版日期:2022-05-25 发布日期:2022-05-24
  • 基金资助:
    国家自然科学基金(62072288,61702306);山东省自然科学基金(ZR2018BF013)

An academic rising star prediction method based on multi-graph convolutional neural network and attention mechanism

SHAN Hui1,DING Cheng-xin1,ZHAO Zhong-ying1,ZHOU Ming-cheng1,JIA Xiao-sheng1,LI Chao1,2   

  1. (1.College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590;
    2.College of Electronic Information Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
  • Received:2021-09-29 Revised:2021-11-07 Accepted:2022-05-25 Online:2022-05-25 Published:2022-05-24

摘要: 从学术新人中发掘出有潜力的学术新星能够为人才引进、项目评审和专家库构建等任务提供决策支持,具有重要的研究意义与应用价值,因此受到学术界的广泛关注。然而现有的学术新星预测方法并没有将学者的合作关系和个体属性信息进行有机结合,导致准确率低下。为解决上述问题,提出了一种基于多图卷积神经网络与注意力机制的学术新星预测方法MGCNA。综合考虑了合作网络与相似网络,基于2种网络使用图卷积神经网络学习作者的特征表示,再利用注意力机制进行信息融合,从而预测潜力较高的学术新星。最后在来自ArnetMiner平台的真实数据集上进行了实验,实验结果表明了MGCNA在预测学术新星任务上的有效性。

关键词: 学术新星;图卷积神经网络;注意力机制, 合作网络分析

Abstract: Identifying potential academic rising stars from academic newcomers can provide decision support for tasks such as talent introduction, project review, and expert database construction, which has important research significance and application value and has received extensive attention from the academic community. However, the existing academic rising star prediction methods do not organically combine the academic cooperation relationship and individual attribute information, resulting in low accuracy. To solve the above problem, this paper proposes an academic rising star prediction method  MGCNA based on multi-graph convolutional neural network and attention mechanism.It comprehensively considers cooperative networks and similar networks. Based on the two networks, the graph convolutional neural network is used to learn the authors feature representation, and then the attention mechanism is used for information fusion, so as to predict the academic rising stars with high potential. Finally, experiments are carried out on real datasets from the ArnetMiner platform, and the experimental results demonstrate the effectiveness of MGCNA in predicting academic rsing star tasks.


Key words: academic rising star, graph convolutional neural network, attention mechanism, cooperative network analysis