计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1457-1466.
王林,王燕丽,安泽远
WANG Lin,WANG Yan-li,AN Ze-yuan
摘要: 首先引入自适应算子对标准粒子群优化算法PSO的惯性权重和学习因子进行改进,以提高其探索当前空间和开发未知空间之间的平衡性。同时,采用非线性函数来构建回声状态网络ESN储备池内部状态之间的非线性关系。接着利用改进的粒子群优化算法APSO对非线性回声状态网络NESN的关键参数进行优化,以构建APSO-NESN组合预测模型。最后运用该模型进行电力需求预测。实验结果表明,相比自回归移动平均模型、多元线性回归、标准ESN及其他预测模型,APSO-NESN模型具有更高的预测精度。