计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1488-1496.
赵春兰1,2,李屹1,何婷1,武刚3,王兵4
ZHAO Chun-lan1,2,LI Yi1,HE Ting1,WU Gang3,WANG Bing4
摘要: 科学有效的水质预测对于水资源的管理与水污染预警尤为重要。由于水质指标序列存在非线性、非平稳性、模糊性和季节性等特点,传统预测模型的精度受到一定的限制。结合差分整合自回归移动平均ARIMA模型和经典模糊时间序列模型的特性,提出了一种基于动态隶属度的模糊时间序列水质预测新模型。首先,利用模糊C均值聚类从原始数据中构建隶属度序列;其次,利用经典的时间序列模型对不同的子隶属度序列进行预测,得到动态隶属度;最后,去模糊化得到水质指标的预测值。应用提出的新模型对岷江某断面的水质指标进行了短期预测,并与经典模糊时间序列模型和ARIMA乘积季节模型进行对比。实验结果表明,新模型在RMSE、MAPE和MAE上均优于经典模糊时间序列模型和ARIMA乘积季节模型,极大地提高了预测精度,可为水污染防治提供有价值的参考。