计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (09): 1702-1710.
• 人工智能与数据挖掘 • 上一篇
王繁1,2,郭军军1,余正涛1,2
WANG Fan1,2,GUO Jun-jun1,YU Zheng-tao1,2
摘要: 目前,针对微博领域的谣言检测方法主要基于微博正文,同时辅以用户评论特征、传播特征等信息进行判定。然而已有方法没有考虑用户评论质量会直接影响谣言检测的性能,质量低的评论甚至会引入无用甚至负面的特征,进而对谣言检测的性能带来更大的影响。针对该问题,基于用户评论和谣言检测的关联性,首次提出一种考虑评论有效性,并基于多任务联合学习的谣言检测方法。首先将谣言检测作为主任务,用户评论相关性检测为辅助任务;然后采用门控机制和注意力机制过滤和选择有效的用户评论特征;最后基于自主构建的3万条疫情微博谣言数据集进行实验。实验结果表明,对用户评论进行筛选不仅可以提升谣言检测性能,还能对用户评论质量进行判定。