计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (10): 1812-1821.
任小康,刘行行
REN Xiao-kang,LIU Xing-xing
摘要: 新冠疫情仍在全球肆虐,佩戴口罩可以有效阻断新冠病毒传播,口罩佩戴检测系统能及时提醒公共场所活动的人佩戴口罩。针对该问题及小尺度目标检测困难的问题,提出了一种基于YOLOv3改进的网络模型Face_mask Net用于口罩佩戴检测。由于YOLOv3算法训练的网络模型对小目标检测率低,IoU值相同时不能反映预测框和目标框是否相交,以及传统NMS对于遮挡经常产生错误抑制情况,Face_mask Net改进了残差块和神经网络结构,引入SPP模块和CSPNet网络模块,并采用DIoU作为损失函数,DIoU-NMS算法作为分类器。实验结果表明,Face_mask Net可以有效提高目标检测准确率,AP75下的平均准确率为58.05%,相比由YOLOv3算法训练的网络模型提高了4.11%。