• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (12): 2255-2265.

• 人工智能与数据挖掘 • 上一篇    下一篇

采用双档案协同进化离散多目标烟花算法的低碳疫苗冷链优化配送

申晓宁1,2,3,游璇1,陈庆洲1,潘红丽1,黄遥1   

  1. (1.南京信息工程大学自动化学院,江苏 南京 210044;2.江苏省大气环境与装备技术协同创新中心,江苏 南京 210044;
    3.江苏省大数据分析技术重点实验室,江苏 南京 210044)

  • 收稿日期:2021-05-12 修回日期:2021-06-28 接受日期:2022-12-25 出版日期:2022-12-25 发布日期:2023-01-05
  • 基金资助:
    国家自然科学基金(61502239);江苏省自然科学基金(BK20150924)

A multi-objective fireworks algorithm with two-archive coevolution for low-carbon cold chain distribution optimization of vaccines

SHEN Xiao-ning1,2,3,YOU Xuan1,CHEN Qing-zhou1,PAN Hong-li1,HUANG Yao1   

  1. (1.School of Automation,Nanjing University of Information Science and Technology,Nanjing 210044;
    2.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing 210044;
    3.Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing 210044,China)
  • Received:2021-05-12 Revised:2021-06-28 Accepted:2022-12-25 Online:2022-12-25 Published:2023-01-05

摘要: 建立低碳疫苗冷链配送问题的约束多目标优化模型,在满足可用车数量、车辆容量约束和时间窗约束的条件下,考虑最小化碳排放的企业运输成本和客户不满意度。提出一种双档案协同进化的离散多目标烟花算法,采用消除车辆数量和容量约束的解码方式,设计了部分映射爆炸算子,设置可行解档案和不可行解档案协同进化,并对不可行解档案实施可行性搜索。实验结果表明,与已有算法相比,所提算法在低碳疫苗冷链配送问题上能高效地搜索到一组收敛精度和分布性能更优的Pareto非支配解。

关键词: 低碳, 疫苗配送, 多目标优化, 烟花算法, 约束处理, 协同进化

Abstract: A constrained multi-objective optimization model for the low-carbon-cold chain distribution of vaccines is established to minimize the corporate transportation costs including the cost of carbon emissions and customer dissatisfaction, satisfying the constraints of  the number of available vehicles, vehicle capacity and time window. A discrete two-archive-based multi-objective fireworks algorithm is proposed. The decoding method that can meet the constraints of the number of available vehicles and vehicle capacity is adopted. The partial mapping explosion operator is designed. Feasible solution archive and infeasible solution archive are set for coevolution. Feasibility search is performed on the infeasible solution archive. Experimental results show that, compared with the existing algorithms, the proposed algorithm can effectively obtain a group of Pareto non-dominated solutions with better convergence and distribution.

Key words: low-carbon, vaccine distribution, multi-objective optimization, fireworks algorithm, constraint handling, coevolution