计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (01): 136-144.
王晨宇1,温浩珉1,郭晟楠1,2,林友芳1,2,万怀宇1,2
WANG Chen-yu1,WEN Hao-min1,GUO Sheng-nan1,2,LIN You-fang1,2,WAN Huai-yu1,2
摘要: 快递员揽件到达时间预测,即预测用户下单后快递员的上门揽收时间,一直都是物流企业所关心的重要问题。准确的揽件到达时间预测可以优化揽件效率,提升用户体验。该问题主要存在以下挑战:(1)快递员揽件到达时间受到多种复杂时空因素的影响,包括待预测订单自身的时空特征,以及与其他待揽收订单之间的相互影响;(2)快递员在执行揽件任务期间,会不断接收到系统分配的新订单,造成揽收路线的动态变化,从而给揽件到达时间预测带来了更大的不确定性。针对以上挑战,提出了一种面向揽件到达时间预测的多任务深度时空网络MSTN4PAT模型,从海量的揽件历史数据中学习快递员揽件到达时间的复杂时空模式。MSTN4PAT充分挖掘待预测订单始发地与目的地之间的内在关联,使用多任务学习来建模订单之间的相互影响,并从特征宽度和特征深度2个角度高效融合各种特征,实现准确的揽件到达时间预测。在真实的揽件数据集上的实验结果表明,MSTN4PAT的预测效果明显优于对比模型。