• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (01): 145-153.

• 人工智能与数据挖掘 • 上一篇    下一篇

一种自适应鲸鱼快速优化算法

杨炳媛,袁杰,郭园园   

  1. (新疆大学电气工程学院,新疆 乌鲁木齐 830047)

  • 收稿日期:2021-03-30 修回日期:2021-08-11 接受日期:2023-01-25 出版日期:2023-01-25 发布日期:2023-01-25
  • 基金资助:
    国家自然科学基金(61863033,62073227,62263031);新疆维吾尔自治区天山青年计划-优秀青年人才培养项目(2019Q018)

An adaptive fast whale optimization algorithm

YANG Bing-yuan,YUAN Jie,GUO Yuan-yuan   

  1. (School of Electrical Engineering,Xinjiang University,Urumqi 830047,China)
  • Received:2021-03-30 Revised:2021-08-11 Accepted:2023-01-25 Online:2023-01-25 Published:2023-01-25

摘要: 针对标准鲸鱼优化算法存在的局部搜索能力不足、收敛速度慢等问题,提出了一种自适应鲸鱼快速优化算法AWOA。该算法根据个体的集散程度自适应选择全局搜索或局部搜索,在两者之间实现了动态平衡。针对偏离样本平均位置程度较高的个体引入Levy Flight进行二次优化,进一步扩大搜索区域,保证了算法的全局搜索能力。采用标准测试函数证实了AOWA具有较高的收敛速度及稳定性。将AWOA应用于无人车路径规划问题,仿真结果表明其具有稳定的局部搜索能力和全局搜索能力。

关键词: 鲸鱼优化算法, 局部搜索, 收敛速度, 自适应, Levy Flight, 路径规划

Abstract: An adaptive fast whale optimization algorithm (AWOA) is proposed to solve the problems of insufficient local search ability and slow convergence rate of the standard whale optimization algorithm. The algorithm adaptively selects global search or local search according to the degree of individual distribution and achieves a dynamic balance between them. Levy Flight is introduced for the secondary optimization of individuals with a high degree of deviation from the average position of the sample to further expand the search area and ensure the global search ability of the algorithm. Standard test functions are used to prove that AOWA has high convergence rate and stability. AWOA is applied to unmanned vehicle's path planning. The simulation results show that it has the stable local exploitation capability and global exploration capability. 


Key words: whale optimization algorithm, local exploitation, adaptive, Levy Flight, path planning