计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (01): 85-94.
顾楚梅1,2,曹建军1,王保卫2,徐雨芯1,2
GU Chu-mei1,2,CAO Jian-jun1,WANG Bao-wei2,XU Yu-xin1,2
摘要: 为提升辐射源个体识别正确率和运算效率,提出了一种基于蚁群参数优化的LightGBM辐射源个体识别方法。运用提升小波包变换对辐射源信号数据进行特征提取并构建特征参数体系,对得到的特征数据集进行Z-score标准化处理;以最大分类正确率和最小特征子集规模为目标,建立了LightGBM参数优化和特征选择的数学模型;采用蚁群算法优化LightGBM的6个参数(最小叶子节点数据量、决策树的数量、学习率、L1正则化项的权重、L2正则化项的权重和最小叶子节点样本权重和);根据优化后的LightGBM得到每个特征的重要性值并使用序列后向搜索策略进行特征选择;最后通过LightGBM分类器实现对辐射源信号的分类识别。实验结果表明,所提方法在无噪声、信噪比为10 dB和信噪比为5 dB信号的数据集上的识别正确率优于对比特征选择方法GBDT、XGBoost和LightGBM的,同时特征维数的减少也提升了辐射源个体识别的运算效率。